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The dispersion relation and component phase speeds of surface gravity wavefields 
and modulated wavetrains are calculated. A parametric study is performed for a 
range of nonlinearity and spectral bandwidths. It is found that the amount of depar- 
ture from linear theory increases with the ratio of nonlinearity to spectral bandwidth. 
The calculated results are compared quantitatively with laboratory and ocean 
measurements of wavetrains and wavefields with and without wind. The good 
agreement between theory and experiment suggests that the nonlinearity-dispersion 
balance is a likely candidate to account for the observed discrepancy between linear 
theory and data, as well as for the difference in behaviour between laboratory and 
oceanic wave measurements. 

1. Introduction 
Recent developments in the measurement and modelling of nonlinear wind waves 

have generated interest in the dispersion relation and component phase speeds of a 
spectrum of deep-water surface gravity waves. Open-ocean measurements by Von 
Zweck (1970), Yefimov, Solov’yev & Khristoforov (1972), Grose, Warsh & Garstang 
(1972) and Ramamonjiarisoa & Giovanangeli (1978), as well as laboratory measure- 
ments by Ramamonjiarisoa (1974), Ramamonjiarisoa & Coantic (1976), Lake & Yuen 
(1978), Rikiishi (1978) and Mitsuyasu, Kuo & Masuda (1979) all seem to indicate that 
some discrepancies exist between the measured values and the predictions of linear 
theory. The degree of departure from linear theory varies from case to case. Many 
explanations for this discrepancy have been proposed, including directional effects 
(Huang & Tung 1977), nonlinear effects of one form or another (Lake & Yuen 1978; 
Mollo-Christensen & Ramamonjiarisoa 1978; Yuen & Lake 1978; Grose et al. 1972; 
Masuda, Kuo & Mitsuyasu 1979) and surface drift current effects (Plant & Wright 
1979). It is difficult to assess the relative merits of these explanations, for they all 
involve some assumptions about the wind-wave interaction process or the statistical 
properties of the wavefield - the rigour and validity of which are still open to question. 

In this paper, an attempt is made to gain information on the properties of a gravity 
wavefield by calculating its dispersion relation and component phase speeds, in the 
simplest, yet non-trivial, situation. A one-dimensional, non-random, deep-water 
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gravity wavefield, in the absence of wind or currents, is examined. Even this 
apparently simple wave system displays a surprisingly rich structure, and provides 
important information on the dispersive properties of linear and nonlinear wave- 
fields. 

We recall two familiar results on deep-water waves. First, for a linear wave system, 
all components in the spectrum travel a t  different speeds, as given by the linear 
dispersion relation. Second, for a weakly nonlinear, uniform steady wavetrain (Stokes 
waves), all the harmonics travel a t  the same speed as the fundamental and hence they 
do not obey the linear dispersion relation. These results indicate that free linear waves 
and harmonics of a weakly nonlinear wavetrain can behave quite differently. In  
general, for a system of waves which are not infinitesimal, both free waves and 
harmonics (bound waves) exist, and an important issue to be resolved is how the 
nonlinearity and bandwidth of a wave system affect the dispersive behaviour of a 
particular wave component. The integral equation first derived by Zakharov (1968) is 
used as the governing equation for the evolution of the wave field. Zakharov showed 
that this equation reduces to the nonlinear Schrodinger equation, if one assumes a 
narrow bandwidth and a constant dominant wavenumber. Crawford, Saffman & Yuen 
(1980) extended Zakharov’s equation to describe the evolution of a random wavefield 
possessing spatial inhomogeneity, and showed that the results were consistent with 
those of Hasselmann (1962, 1963) when the wave field was assumed homogeneous. 
Crawford et al. (1981) examined the stability properties of a nonlinear wavetrain 
using Zakharov’s equation, and found that significant differences from results ob- 
tained by Benjamin & Feir (1967) exist for moderate and large values of wave steep- 
ness (k,a,, where k, is the carrier wavenumber and a, is the carrier wave amplitude). 
Saffman & Yuen (1978), using a multiple time-scale approach, demonstrated that, 
when the ratio of the bandwidth of the spectrum to the characteristic nonlinearity of 
the wave system is of order unity or less, the lower-order mechanisms contained in 
Zakharov’s equation dominate. When the ratio is very large, effects of these lower- 
order mechanisms diminish, and the wave system behaves in a near-linear fashion to 
the order considered. Thus, Zakharov’s equation adequately describes the evolution 
of a nonlinear wavetrain (and provides a better model than the nonlinear Schrodinger 
equation), and it is consistent with the known results for linear or near-linear spectra 
of waves. This makes it an appropriate equation on which to base this study. 

Section 2 will briefly describe the governing equation for the evolution of a wave- 
field. Section 3 defines the procedure for determining the component phase speeds 
and dispersion relation of a wavefield. Results of the calculation are given in $ 5  4 and 5 
and these results are compared with available experimental data in $6.  A discussion 
and summary are provided in tj 7. 

2. The governing equations 

of a field of weakly nonlinear, deep-water, gravity waves is 
It has been shown by Zakharov (1968) that the equation governing the evolution 
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where ( )* denotes complex conjugation; k = (k, 1 )  is the wave vector; x = (x, y )  is 
the spatial vector; w(k) is the linear wave frequency, defined as 

4) = (9lk1)4 (2) 

with g as the acceleration due to gravity; T(k ,  k,, k,, k3) is a real, scalar interaction 
coefficient first calculated by Zakharov (1968), and is recorded in appendix A with 
some minor algebraic errors removed. 

The free surface q(x, t )  is specified by A(k, t )  through the following expressions: 

I 4 
q(X, t )  = (a) [a(k, t )  eik'I + a*(k, t )  e-ik'x] dk, (3) 

a(k, t )  = [A(k, t )  + B(k, t ) ]  e-iw(k)t, (4) 

Xdkldk,, (5) 

where B(k, t )  is tha second-order correction to A(k, t )  and V(k)(k, k,, k,) are real, 
scalar, second-order interaction coefficients given in appendix A. The free-surface 
representation given by equations (3), (4) and (5) is correct to second order in wave 
amplitude. 

3. Calculation of component phase speeds and dispersion relation for a 
spectrum of waves 

This study will henceforth focus on one-space dimensional situations, but the 
generalization of two-space dimensions presents no conceptual difficulties. For a given 
free surface q(x ,  t ) ,  a bandpass filtering process is defined as one which yields a filtered 
signal ijp(x, t )  for each selection of wavenumber Icp:  

where 
4 cos ( kp 5) sin (A, 5) 

6 Kp(5) = 

The filter function Kp(5)  as defined in ( 7 )  corresponds to a top-hat filter with total 
bandwidth 2Af centred at  Ic,, which is evident from the properties of its Fourier 
transform RJK) : 

A space--time correlation function R,(h, T )  is defined for the filtered signals: 

R,(h, 7) = <r?,(x, t )  " i ( x  + A t + 7))> (9) 
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where ( ) denotes ensemble averaging, and the processes are assumed to be statis- 
tically homogeneous and stationary so that Rp is independent of x and t .  For a fixed 
value of 7, say 7 0 ,  let A, satisfy 

(10) a Rp(L, 7 0 )  = 0, 

which is the lag-distance to maximum correlation for a well-defined correlation 
function. The phase velocity C ( k p )  is then defined by 

a 

C(kp)  = lim -, Am. 
rn-4 T n  

the corresponding frequency Q ( k p )  is 

Q(kp)  = C(le , )kp .  (1la) 

The above procedure is now applied to a wavefield characterized by a given A ( k ,  t ) .  
In general, experimental measurements of q and dq/dt at a given time determine a 
and a*; from which the complex-valued function A would follow, after solving an 
integral equation given by (4) and ( 5 ) .  Of concern presently, however, are the effects 
of nonlinearity and spectral bandwidth on the component phase speeds and disper- 
sion relation; for this purpose, exact details of A are unimportant and it is sufficient 
to considor real, prescribed functional forms for A .  Note that, even when A is real, 
the second-order correction B [defined in terms of A in equation ( 5 ) ]  is generally 
complex. 

Substitution of equations (3) and (4) into (6), and taking the limit of small Af, 
yields qp(x, t )  in terms of A and B: 

2 kt  1 k$ ij,(x,t) = - L A  A k , t  c o s ( k p x - w p t ) + - - A f [ B ( - k p , t ) e x p [ - i ( k p x + w p t ) ]  
J Z w $  ( p  4 2  w: 

+ B*( - IC,, t )  exp [ i ( kpx  + w p t ) ]  + B(kp, t )  exp [ i (kpx  - w p t ) ]  

+ B* (kp  , t ) exp [ - i( kp  x - wr, t )]I, (12) 

where up = w(k,) = (gkp)b. The stationarity assumption permits us to choose 
x = t = 0,  and condition (10) reduces to 

Direct evaluation of ( 1  3) using expression (12) gives 

where Im [ 3 denotes the imaginary part, B, and Bi are the real and imaginary parts 
of B, aA(kp, O ) / a t  is given by equation ( l ) ,  and aBi( kp, O ) / a t  is given in appendix B. 

For a linear wavefield, the higher-order correction terms B, aA/a t  and aBi/at are 
all negligible, and C ( k p )  reduces to the linear result 
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regardless of the structure of the spectrum. Stokes’ result for B weakly nonlinear 
wavetrain can be recovered by taking 

A ( k )  = b,S(k-k,) .  (16) 

Letting kp = k,, the equation obtained is 

ijp(h,7) = - - ’’ [ 2 b 0 c o s ( k 0 h - ~ , ~ ) + 2 ~ T ( k 0 , k 0 ,  k o , k , ) b ~ s i n ( k o , h - w O ~ ) ] ,  (17) 
212 wb 

where 

TPO, ko, k,, ko) = 4 n 2  3 (18) 

and b, is related to the amplitude of the wavetrain a, by 

2n2a; 0, 

k0 
b t = - .  

For a given T,, the condition 

yields the phase speed C(ko) as 
w T ( k  k k k ) b t  

Q(k,) = -!?+ 0’ 0’ 0’ 0 

k0 k0 

which is the phase speed of the fundamental mode of a weakly nonlinear wavetrain 
obtained by Stokes. 

When kp = 2k, is taken, a similar calculation gives 

indicating that the second harmonic travels at  the phase speed of the fundamental 
mode. This result serves to check our formulations, since all harmonics of a steady 
wavetrain must travel at the same speed. 

4. Results for a modulated wavetrain 
In this section, some results of the dispersion-relation and component-phase-speed 

calculations for a modulated wavetrain are presented. The form of A ( k )  is chosen to be 

(23) A ( k )  = b,S(k - k,) + b+ S(k - k, - Ak,) + b- S(k - k, + Ak,), 

which corresponds to a dominant component of strength b,  at k = k, and a pair of 
sidebands with strengths b, (small compared with b,), located at  dk, away from 
the dominant component. The degree of modulation is proportional to the sideband 
strengths, and the wavelength of modulation is inversely proportional to the sideband 
separation. These three components form the primary system. Second-order correc- 
tions are given by equation (5), and yield secondary ‘forced’ components at  k = Ak,, 
2Ak0, 2k, - 2Ako, 2k0 - Ak,, 2k,, 2k0 + Ak,, 2k, + 2Ak,. The component at Ak, describes 
the wave envelope and should travel with the group velocity, which to leeding order 
is one-half of the value for the phase velocity. The component at  2Ak0 does not possess 



6 D. R. Crawford, B. M. Lake, P. G. 8affman and H. C. Yuen 

2.5 

2.0 

1.5 

1 .o 

0.5 

0 0 

FIGURE 1. Phas-espeed calculations for a modulated wavetrain with (ka),,, = 0.10. (a)  Dimen- 
sionless spectrum P ( k ) / F ( k , )  versus dimensionless wavenumber klk,,. ( b )  Component phase 
speed normalized by linear phase speed k,, C ( k ) / C & J ,  versus dimensionless wavenumber 
klk,. --, linear case. 
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a familiar physical interpretation, but should behave in a similar manner as the 
component a t  Ak,. The component a t  k = 2k, is the second harmonic, and the four 
neighbouring components reflect the effect of the modulation on the second harmonic. 

A plot of the resulting spectrum P(k)  = A ( k )  + B ( k ) ,  corresponding to a case where 
the root-mean-square wave steepness (ka),,, = 0.10, A = 0 - 2  and b,/b, = 0.1, is 
given in figure 1 (a) .  All components mentioned above can be seen except the one a t  
2Ak,, which is too small to  appear on the same scale. The inequality of the sideband 
components is caused by the k-dependent normalization in the definition of A(k) .  
The inequality of the neighbouring components of the second harmonic results from 
this normalization effect, as well as the k-dependence of the interaction coefficient 
appearing in equation (5). 

I n  figure l ( b )  the component phase speeds C ( K )  are plotted [normalized by the 
linear phase speed based on the dominant wavenumber, C,(k,)] against the ways- 
number (normalized by the peak wavenumber k,). It can be seen that the component 
phase speeds of the primary system of wave components (at k/k, = 1.0, 0.8 and 1.2) 
follow closely those obtained from the linear dispersion relation (represented by the 
solid line), with minor corrections ( ~ % a ) : ~ ~  due to the nonlinearity. The low-wave- 
number components at Ak, and 2Ak, stay near the group velocity value at approxi- 
mately one-half of the primary phase speed. The second harmonic a t  2k, travels a t  
the same speed as the primary, and its neighbouring components behave in a manner 
similar to  that of the sidebands of the dominant wave. Thus, the ‘forced’ components 
do not follow the linear dispersion relation results, but instead behave in a manner 
expected of a nonlinearly coupled wave system. 

A second example of results obtained for modulated wavetrains is given in figure 2.  
All parameters remain the same as in figure 1 except that ( k ~ ) , ~ ~  is now 0.01, so the 
wavetrain can be considered linear for almost all practical purposes. The power 
spectrum is shown in figure 2(a ) ;  all the ‘forced’ components including the second 
harmonic are too small to appear in the plot. The plot of the normalized component 
phase speeds against the normalized wavenumber, however, shows substantially the 
same trend as that found in figure 1 (b)  (see figure 2 b ) .  The low-wavenumber com- 
ponents travel a t  group speed, and the second harmonic a t  the same speed as the 
dominant. The sidebands of the dominant component follow the linear theory closely, 
and the neighbouring components of.the second harmonic have the same trend as 
those in the primary system. Despite the extremely weak nonlinearity, none of the 
forced components obey the linear theory. 

Other related results are shown in figures 2 (c)-(9). The dispersion relation showing 
the frequency (normalized by the linear frequency a t  k,) against the normalized 
wavenumber is given in figure 2(c) .  The normalized phase speed is plotted against 
thenormalized frequencyin figure 2 ( d ) .  In  figures 2 ( e ) - ( g ) ,  theaboveplotsarerepeated, 
but with normalization based on the peak values and not the linear results a t  the peak 
wavenumber. I n  the subsequent presentation of results, the latter normalization will 
be used. 

These ’results apply only to the primary components and their second harmonics, 
do not take into consideration the behaviour of third and higher harmonics. How- 
ever, most of the present conclusions can be extrapolated to higher harmonics 
without substantial qualitative changes. For example, a higher-order analysis would 
lead to the result that  all the harmonics generated by the primary system travel a t  
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0 3.0 

FIGURE 2. Phase-speed and dispersion-relation calculations for a modulated wavetrain with 
(ku),,, = 0.01. (a) Dimensionless spectrum P ( k ) / F ( k , )  versus dimensionless wavenumber 
k/ko .  ( b )  Component phase speed normalized by linear phase speed at  k,, c ( k ) / C ~ ( k , ) ,  versus 
dimensionless wavenumber k/k , .  ( c )  Dispersion relation: dimensionless frequency normalized 
by linear theory C2(k)/RL(ko), versus wavenumber k/k, .  ( d )  Dimensionless component phase 
speed normalized by linear theory c(Cl)/C~(n,) versus normalized frequency n/R,. (e) Com- 
ponent phase speed normalized by phase speed at k, ,  C(k) /C(k , ) ,  versus dimensionless wave- 
number k/k, .  (f) Dispersion relation: Dimensionless frequency normalized by frequency at  
k,, C2(k)/C2(k0), versus dimensionless wavenumber k/k , .  (9) Dimensionless component phase 
speed normalized by value at k,, C(Q)/C(.Q,), versus dimensionless wavenumber C2/l2,. 
- , linear case. 

the same speed as the dominant wave. The behaviour of the components near the 
generated higher harmonics is expected to follow that of the components in the 
vicinity of the second harmonic at least qualitatively. Taking this expectation further, 
more forced components should be found around higher harmonics, and their depen- 
dence on wavenumber should be weaker and weaker; this is evidenced by the fact that 
the dependence on wavenumber of the components around the second harmonic is 
weaker than that around the dominant wave (see figures 2( b) ,  ( 9 )  for frequency depen- 
dence). As a result, the plot of the component phase speed, against wavenumber or 
frequency, should level out a t  the dominant wave speed at  higher wavenumbers or 
frequencies. The same tendency is noted by Ramamonjiarisoa & Coantic (1976) and 
Lake & Yuen (1978) for a wind-generated wave field in a one-dimensional wave tank, 
which suggests the existence of forced components (or ‘bound’ waves). It must be 
kept in mind, however, that in a situation where the waves are generated by zt com- 
plicated disturbance (such as wind) the higher modes are composed of free waves as 
well as forced components, and the resulting dispersion-relation and phase-speed 
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plots will reflect mixed behaviour. In  the next section, some examples are presented 
to illustrate the nature of these mixed systems by considering spectra of waves. 

5. Results for spectra with varying nonlinearity and bandwidth 
We now consider continuous spectra. The leading-order spectrum A(k)  is assumed 

to take the form of a Lorentzian distribution, with a decay rate of k-4. The spectral 
form is completely specified by two parameters governing the effective bandwidth 
and the characteristic nonlinearity, the definition of which are given in appendix C. 

We first examine the effects of nonlinearity by varying ( k ~ ) , , , , ~  while keeping the 
bandwidth a constant. Figure 3 shows a series of calculations for a relatively narrow 
spectrum (a = 0.05) for three values of (ka)rm,: 0.01, 0.10 and 0.20. The plots for 
F(k) = A(k)  + B(k)  are given in figure 3(a).  It can be seen that the second harmonic 
becomes more prominent as (ka),,, increases. The component phase speed (normalized 
by its value a t  the spectral peak) is plotted against the wavenumber (normalized by 
the wavenumber at the spectral peak) for each of the three cases in figure 3(6). For 
small nonlinearity [(ka),,, = 0.011, the departure from the linear results is concen- 
trated at the second harmonic region. The departure becomes more significant, and 
at the same time less localized, as nonlinearity increases. The plot of component 
phase speed against frequency (normalized by the frequency associated with the peak 
wavenumber) is shown in figure 3 (c). Again, the departure from linear theory increases 
in magnitude and spread as nonlinearity increases. The interesting point to note here 
is that the location of the departure from linear theory moves from a value close to 
Q/Qo = 1.6 for (ka),ms = 0.01 to Q/Q, = 2-0 for (ka),,,,* = 0.2. The reason for this 
behaviour can be found in the dispersion relation given in figure 3(d) ,  which shows 
the departure from linear dispersion relation with increasing nonlinearity. For 
(ka),,, = 0.01, the departure for linear theory is small, so that Q/Qo = (k/k,)*; thus 
k / k ,  = 2 corresponds roughly to Q/Qo = ,/ 2. For stronger nonlinearity, the disper- 
sion curve approaches that for a dispersionless system, and k / k ,  = 2 then corresponds 
to Q/s2, = 2. The same reasoning also applies to explain the apparent difference 
in the lengths of the phase speed curves (figure 3c) for various values of nonlinearity. 

The results for a relatively broad spectrum (a = 0.2) are given in figure 4. The 
departure is more spread out compared to the narrow band case. The dispersion 
relation in figure 4 ( d )  again shows the tendency towards a dispersionless behaviour 
as nonlinearity increases. 

The next series of calculations concerns the effects of bandwidth for fixed non- 
linearity. Figure 5 shows the results for (ku),,,,, = 0-01 and a varies from 0.05 to 0.30. 
The plots of F ( k )  = A(k)  + B(k) indicate that the second harmonic is obscured in all 
but the most narrow band case. The component phase speed approximates closely 
that given by the linear theory, with a small localized departure for the narrow-band 
case. The departures are negligible for the other cases. Similar conclusions can be 
drawn from the phase speed/frequency plot and the dispersion relation. The strong 
nonlinearity case, with ( k ~ ) , ~ ~  = 0.2, is shown in figure 6. The prominence of the 
second harmonic again decreases with increasing bandwidth (figure 6 u) .  However, 
the component phase speed (figures 66, c) and the dispersion relation (figure 6 d )  are 
quite insensitive to the variation in bandwidth despite the rather striking differences 
in spectral appearance. 
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FIQURE 3. Component-phase-speed and dispersion-relation calculations for continuous spectra 
(Lorentzian form) with fixed bandwidth, cr = 0.05 and varying nonlinearity. (a)  Dimensionless 
wavenumber spectre. (5) Normalized component phase speed as a function of wavenumber. 
(c )  Normalized component phase speed as a function of frequency. ( d )  Normalized dispersion 
relation. 0,  ka = 0.01; 0, ka = 0.10; A, ka = 0.20. --, linear case. 



Nonlinearity and spectral bandwidth on surface gravity waves 15 

1 

lo-' 

lo-' 

10-3 

2.5 

2.0 

1.5 

1 .o 

0 1 .o 2.0 3.0 

klko 
(b) 

For legend for 4(a), (b) see p. 16. 
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FIGURE 4. Component-phase-speed and dispersion-relation calculations for continuous spectra 
(Lorentzian form) with fixed bandwidth, u = 0.20 and varying nonlinearity. (a)  Dimensionless 
wavenumber spectra. ( b )  Normalized component phase speed as a function of wavenumber. 
(c) Normalized component phase speed as a function of frequency. ( d )  Normalized dispersion 
relation. 0, ka = 0.01; 0, ka = 0.10; A, ka = 0.20. -, linear case. 
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(d)  
FIGURE 5. Component-phase-speed and dispersion-relation calculations for continuous spectra 
(Lorentzian form) with fixed nonlinearity (ka),me = 0.01 and varying bandwidth. (a)  Dimen- 
sionless wavenumber spectra. ( b )  Normalized component phase speed as a function of wave- 
number. ( c )  Normalized component phase speed as a function of frequency. ( d )  Normalized 
dispersion relation. @, u = 0.05; 0, = 0.10; A, u = 0.20; +, u = 0.30. --, linear case. 
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FI~URE 6. Component -phase-speed and dispersion-relation calculations for continuous spectra 
(Lorentzian form) with fixed nonlinearity (ka),,, = 0.20 and varying bandwidth. (a) Dimen- 
sionless wavenumber spectra. ( b )  Normalized component phase speed aa a function of wave- 
number. (c) Normalized component phase speed as a function of frequency. ( d )  Normalized 
dispersion relation. 0,  = 0.05; 0, u = 0.10; A, B = 0.20; +, u = 0.30. --, linear case. 
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W52, 
FIGURE 7. Normalized component phase speed C/C, versus dimensionless frequency n/R, for 
various spectra to illustrate the trend of results as a function of spectral aspect ratio 
r = Q / ( W * m * .  

r = u/(ka),,, (ka),, U 

(1) 30 0.01 0.30 
(2) 10 0.01 0.10 
( 3) 5 0.01 0-05 
(4) 2 0.10 0.20 
(5) 1 0.20 0.20 
(6) 0.5 0.20 0.10 
(6’) 0.5 0.10 0.05 

It has been proposed by Saffman & Yuen (1978) that the parameter 

c7 r=- 
(ka)rms’ 

which can be thought of as an effective ‘aspect ratio’ of the wave spectrum, may be 
used to characterize the properties of a wave system. When r 1, the free wave 
components dominate the system, and the dispersion relation and related properties 
should be well described by the linear theory. When r 4 1, the opposite should be 
true. In figure 7, we show the component phase speed for six different values of r. It 
can be seen that the departure from the linear theory generally increases with decreas- 
ing r,  as expected. However, there is a difference between the broadband and the 
narrow-band cases. In the former case, the departure from linear theory is less localized 
than the latter even for the same or similar values of r [compare cases (2) with (3), 
and (6) with (S’)]. 

Summarizing, we find that the calculations support the proposition that departure 
from linear theory is most prominent when the spectrum is narrow-banded and the 
nonhearity is relatively strong. The ‘spectral aspect ratio’ r defined in equation (24) 
provides a good qualitative measure of the departure from linear theory. Detailed 
features of the results are dependent on the particular values of c7 and ( l ~ a ) ~ ~ ~ .  
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6. Comparison with experimental data 
In  the preceding sections, through analysis and numerical computation, some 

basic properties of the dispersion relation and component phase speed of wavetrains 
and wavefields have beeh established. Two types of wave components have been 
identified: the ‘free’ waves which more or less obey the linear dispersion relation, and 
the ‘bound’ components which couple nonlinearly with the dominant system, and 
do not obey the linear dispersion relation. For a modulated wavetrain, the higher 
modes are all bound components, and they show significant departure from the linear 
theory even for small values of wave steepness. For a general spectrum of waves, 
however, it is expected that both free and bound components are present. Examina- 
tion of the dispersion relation and component phase speed for these ‘mixed ’ systems 
shows that the bound-wave characteristics are more pronounced when the spectrum 
is narrow and the characteristic nonlinearity relatively strong, whereas the free 
components dominate when the opposite situation obtains. 

Before comparison between calculated results and experimental data proceeds, it 
should be stressed again that the present purpose is limited to demonstrating the fact 
that nonlinear coupling can account for the type of phenomena observed in the 
laboratory and open ocean. The theory is highly idealized (one-dimensional, no wind, 
no current, fully deterministic), so the conclusions drawn from these comparisons 
between theory and data cannot definitely answer whether the balance of nonlinear 
and dispersion considered here is indeed the dominant mechanism in all of the experi- 
mental situations. On the other hand, good agreement should be suggestive that the 
mechanism considered is important in some circumstances. 

There is another caveat. Strictly speaking, better comparisons of results could be 
made by using the definitions in equations (3)-(5) to relate A ( k )  to the free surface. 
This would involve solving an integral equation. In  this preliminary study, this 
initialization procedure has not been carried out; instead, the dominant part of the 
spectrum was fitted to obtain A(k) ,  and equation (5) was used to generate B(k) .  The 
initial phase is arbitrarily set by letting A(k)  be real. This simplified procedure should 
be adequate to serve the present limited purpose. 

The first set of comparisons shown is for a single, modulated wavetrain generated 
by a wave paddle (figure 8). In this plot, the calculated results for koao = 0.01 and 
koao = 0- i0  are given and, considering the discussion in $4, little difference in the two 
cases is expected. Experimental data cover a range of k,a, from 0.02 to 0.10. As can 
be seen, the agreement between theory and experiment is very good; this supports 
the contention that, in a modulated wavetrain, all the higher modes are nonlinearly 
coupled to the primary. They do not obey the linear dispersion relation, regardless of 
how small the value of k,a, may be (experimentally, however, a practical difficulty 
arises for very small values of &a,, in that there is insufficient power in the higher 
harmonics to permit accurate determination of their phase speeds). 

Next, some comparisons are shown between theory and experiments for a spectrum 
of waves in the absence of wind. Experimentally, these are produced by driving a 
programmable wave paddle with pre-recorded wind-wave amplitude wave forms. 
The frequency response of the wave paddle is flat to 5 Hz. Measurements are made a t  
30 feet downtank. The characteristic nonlinearity is varied from case to case by 
changing the amplitude gain of the wave paddle. Figure 9 shows a comparison for a 
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W% 
FIGURE 8. Comparison of calculations with’experimental data for modulated wavetrains for a range 
of nonlinearity. Note that the results are insensitive to the values of Ic,a,. 0 ,  nonlinear theory, 
k,a, = 0.01, 0.1; 0, A ,  0 ,  0, laboratory data (TRW), 0.02 < k,a ,  < 0.1. --. linear theory. 

spectrum with characteristic bandwidth r / k ,  of 0.1 3, and characteristic nonlinearity 
k,a, ranging from 0.01 to 0.098. It can be seen that the agreement is again very good. 
It must be noted, however, that some amount of ambiguity exists in the determina- 
tion of the values of the spectral bandwidth, since the experimentally measured 
spectra are usually quite jagged and must be smoothed to yield a meaningful band- 
width. Nevertheless, the agreement remains satisfactory even when the upper and 
lower limits of the possible values are taken for the bandwidth. 

For field experiments, attention is again focused on the range of wavenumbers 
between k / k ,  = 0 and k / k ,  = 3, where k,  is the wavenumber a t  the peak of the spec- 
trum, assuming a one-dimensional wavefield. Because of the dispersion relation, the 
range of O/O, is slightly smaller. Fifteen discrete points are used to fit the measured 
spectrum in this range. Results for the calculated phase speed and the dispersion 
relation are normalized by their values a t  k,. This normalization scales out the drift 
velocity caused by a current, provided that the current equally affects all the waves 
considered. For a relatively narrow range of wavenumbers around the spectral peak, 
this normalization should remove the first-order effects of wind-induced drift quite 
effectively. A possible strong wavenumber dependence for shorter waves in the ripple 
and capillary regimes was not accounted for here, though, since it does not lie within 
our area of interest. 
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For legend for 9(a),  (b )  see p. 25. 

Figure 10 shows the field data collected by Von Zweck (1970) in Buzzards Bay, 
Massachusetts, on the afternoon of 9 August 1968. The measured phase velocity is 
seen to be higher than that predicted by the linear theory. Von Zweck attributed this 
to directional effects rather than nonlinearity, since he noted that the typical wave 
slope was small, being around In figure 10, a calculation is shown with 
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FIGURE 9. Comparison of calculations with experimental data for a spectrum of waves without 
wind. The data correspond to measurements in a wave tank a t  30 f t  from the wave paddle 
which is programmed to generate waves from prerecorded wind-wave data. The calculations 
are made with the Bretschneider spectra cr = 0.13. (a)  k,a, = 0.01. ( b )  k,a, = 0.045. (c) 
k,a, = 0.098. -, linear case. The data are represented by the shaded areas. 
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FIGURE 10. Comparison of calculations to ocean wind-wave data collected by Von Zweck (1970). 
The calculations are made with spectra obtained by fitting 15 points to the measured spectra. 
H, ocean data (Von Zweck 1970); --, nonlinear theory, k,a, = 0.03,O.lO; - - -, linear theory. 
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FIGURE 11. Comparison of calculations to ocean wind-wave data collected by Yefimov el al. 
(1972). The calculations are made with spectra obtained by fitting 15 points to the measured 
spectra. a, ocean data (Yefimov et al. 1972); -- , nonlinear theory, k,a, = 0.03, 0.01; 
- - -  , linear theory. 

koao = 3 x 10-2, which matches the data. (A calculation with koao = 10-l is also 
shown for comparison.) This is not meant to imply that directionality effects are not 
important (there are none at all in our calculations), but these results clearly show 
that nonlinearity is a possible candidate for explaining the departure from linear 
theory, even a t  this low value of koao. 

The measurements made by Yefimov et al. (1972), in the Black Sea during the 
summer of 1970, are shown in figure 11 .  Only a portion of his data falls within our 
present range of interest. His data show substantial scatter, but they are consistently 
above the prediction of the linear theory. The typical wave-slope value quoted in 
his paper is about 0.03. The data would indeed be well matched by calculations 
with koao between 0.03 and 0.1, with the assumption that the nonlinearity- 
dispersion balance is the only mechanism at work. Again, the agreement is interpreted 
to suggest that nonlinearity is a possible candidate for explaining the measured 
properties. 

The ocean data collected by Grose et aE. (1972) is considered next. It involves 204 
observations in the Atlantic trade-wind region east of Barbados in 1968. For each 
observation, data were least-square fitted to a formula of the form 

Qa = bk, 

where a and b are constants to be determined by the fit. For linear waves, a should be 2, 
and b the acceleration due to gravity in the appropriate units. Grose et al. found that 
the values for a range from 1.2 to 2.05, with the median at around 1.65. The conse- 
quences of their findings on the dispersion relation are shown in figure 12. The shaded 
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region represents the range of the dispersion curves for a = 2 (lower dashed curve) to 
a = 1.25 (upper solid curve); and the curve corresponding to a = 1.65 is given as a 
thin solid line. They quoted a typical value of koao of about 0.065. 

The spectral shapes for the dominant portion of the spectrum were not given in the 
paper, so their results will be compared only to the four calculations obtained using 
the Von Zweck spectrum with koao = 0.03 and 0.10, and the Yefimov spectrum with 
koao = 0.7 and 0-10. Figure 12 shows that the calculations lie within the data region, 
and suggests that the Yefimov spectrum with koao = 0.07 appears to yield the most 
typical results. 

Finally, the laboratory and ocean data given by Ramamonjiarisoa & Giovanangeli 
(1978) are examined. The phase-speed data in figure 2 of their paper are replotted in 
figure 13, with the phase speednormalized at  the dominant component. The laboratory 
data are represented by a shaded region and the two ocean measurement,s by hatched 
regions. The heavy line corresponds to a calculation using the Bretschneider spectrum 
(appendix C) with characteristic bandwidth 0.07 and characteristic nonlinearity 
koao = 0.1, a condition close to that found in the laboratory. The agreement is good, 
including a mild rise in the phase speed in the vicinity of the second harmonic, which 
is characteristic of a narrow spectrum. The two thin lines show the results obtained 
when the Yefimov spectrum (which is relatively broadband) with koao = 0.03 and 
0.10 is used. They agree well with the measured ocean data, in spite of the fact that 
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FIQURE 12. Comparison of calculations with ocean wind-wave data collected by Grose et al. 
(1972). The data are presented as dispersion-relation plots of the form (Q/Q0)" = b ( k / k , ) ,  where 
a and b are determined by best fits. Calculations are made with spectra obtained by 15-point 
fitting of those given by Von Zweck and Yefimov lying within the range of parameters given by 
Grose et al. (1972). @, ocean data (Grose et al. 1972) with R" = bk. --, nonlinear theory: 
( l ) ,  Von Zweck spectrum, k,ao = 0.03; (a), Von Zweck spectrum, koa,  = 0.10; (3) ,  Yefimov 
spectrum, k,ao = 0.07; (4), Yefimov spectrum, koao = 0.10. 
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FIGURE 13. Comparisons of calculations with ocean and laboratory data collected by Ramamon- 
jiarisoa & Giovanangeli (1978). a, laboratory data (Ramamonjiarisoa & Coantic 1976); 
m, ocean data (Ramamonjiarisoa & Giovanangeli 1978). --, nonlinear theory: (l),  Yefimov 
spectrum, k,a, = 0.03; (2),  Yefimov spectrum, k,a, = 0.07; (3), Bretschneider, CT = 0.07, 
k,a, = 0.1. - - -, linear theory. 

the spectral shapes are not exactly matched. These comparisons demonstrate that 
the nonlinearity-dispersion balance, considered in this paper, may explain the dif- 
ference in behaviour between laboratory and ocean data, as well as the departure of 
the measured results from linear theory. 

7. Summary 
The dispersion relation and component phase speeds of wave fields and modulated 

wavetrains have been calcuiated, assuming that the motion is one-space dimensional 
and deterministic in the absence of wind or drift currents. The objective is to assess 
the possibility that nonlinearity may account for the discrepancies that exist between 
various measurements and the linear theory. 

Two types of wave behaviour have been identified: bound and free. The bound 
components are those generated through resonant wave interactions with the domi- 
nant system, and include the harmonics as special cases. They do not obey the linear 
dispersion relation; instead, they travel at  speeds that are greater than the linear 
speeds and may be as great as the speeds of the dominant components in the system. 
Only the free components follow the dispersion relation closely. In  a general wave 
system, both types of components are present, and the behaviour of the system 
depends on the relative importance of each type. This in turn has been found to 
depend on the nonlinearity and bandwidth of the wave system. 
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A parametric study has been performed, for a range of nonlinearity and band- 
widths, to explore the detailed characteristics of wavefields and modulated wave- 
trains. The theory has been compared to laboratory and ocean measurements, and it 
has been found that the nonlinearity-dispersion balance is a likely candidate to 
account for both the discrepancy between the measurements and the linear theory 
as well as the difference in behaviour between laboratory and ocean measurements. 

Because of assumptions made in our calculations, the results achieved are not to be 
taken as evidence that other effects, such as directionality, randomness and currents, 
are unimportant. However, there is sufficient evidence to support the contention that 
nonlinearity should not be ignored in any proposed theory for the evolution of ocean 
waves. 

Appendix A. Third-order interaction coefficient 
The third-order interaction coefficient q,j,k,nl = T(k,, kj, k,, k,) appearing in 

equation ( 1 )  was first found by Zakharov (1968), and is exhibited below with some 
minor misprints removed: 

1 V'" - - 
8nJ2 0 ,1 ,2  - 

w w  El 4 
+[ko.k '- + k  k ]  02- [ w1 kokJ 

(note that J'&), + V!$,!1,2), and &,,I,Lm = W(ki, kj, k,, k,) is given by 
- 

K, 1,2,3 = W-O, --1,2,3 + '2.3, -0, -1 - v2, -1, -0.3 
- - - 

- W-O, 2, -1,3 - W-O, 3,2. -1 - w3, -1,2, -0, (A 3) 

with 

and 
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Appendix B. Calculation of B and aB/at 

A ( k ,  0) = 0 for k < 0, then equation ( 5 )  can be written as 
If it is assumed that the spectrum A(k, 0) is one-dimensional and real, and that 

Therefore, for kP > 0, 

Similarly, 

Since Afk, 0) is real, B( f kB, 0) is real and aB( kP, O ) / a t  is imaginary. For assumed 
spectral forms for A(k ,  0) the terms B( k k,, O ) ,  aA(kp, O)/at ,  and aB( -t k,, o)/at can 
be calculated by integration. 

Appendix C. Spectral forms used in the calculations 

grated non-dimensional spectrum is normalized so that 
The spectra were chosen so that the peak occurs a t  the wavenumber k,. The inte- 

jOWP($$J = 1. 

The spectral width 5 is defined by the location where the spectrum drops to one-half 
of its peak value : 

( I) A 

F I + -  = iP(1). 

The actual value of 5 is obtained by Taylor expansion of (C 2) to  second order. The 
dimensionless bandwidth c is iF/ko. 

The phase speed was calculated using a Lorentzian and a generalized Pierson- 
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Moskowitz spectrum (Bretschneider spectrum). The non-dimensional Lorentzian 
spectrum is given by 

where 

is a coefficient that is used to normalize the spectrum. 
In terms of dimensional quantities the spectrum is given by 

where (v2)  is the mean-squared amplitude, which is equal to the integral ofthe spectral 
function F ( k ) :  

(112) = Jaw P ( k )  dk. (C 6) 

The Bretschneider spectrum is given by 

where p is related to the width of the spectrum ii and the wavenumber ko at the 
spectral peak by 

@ = + + +( 1 + 4k;/C2)4. (C 8) 
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